20 апреля 2023
0
10 962

Арифметические и геометрические прогрессии на ОГЭ по математике в 9 классе 2024

Появились трудностями с прогрессиями при подготовке к экзаменам? Напомним, что такое прогрессия, и как бороться с задачами этой темы ОГЭ по математике.

0
10 962

Что такое последовательность


Последовательность — это набор элементов, расположенных в определенном порядке. Каждый элемент в последовательности имеет свой индекс, который определяет его место в порядке следования.


Например, последовательность целых чисел может быть представлена в таком виде: 1, 2, 3, 4, 5, 6 и далее. В этом случае каждое число имеет свой индекс, например, a1 = 1, a2 = 2 до конечного элемента аn, где n — это количество элементов в последовательности.


В задачах ОГЭ по математике 9 класса последовательности представлены арифметическими и геометрическими прогрессиями.


Школьникам часто задают задания, которые требуют определения элемента последовательности, нахождения суммы первых n элементов или нахождения количества элементов в последовательности.


Чтобы решать такие задачи, необходимо знать свойства и характеристики прогрессий, уметь применять формулы и методы для решения задач на последовательности.


Что такое арифметическая прогрессия


Арифметическая прогрессия — это разновидность числовой последовательности, в которой каждый новый компонент на фиксированное значение отличается от предшествующего. Это значение называют разностью.


Прогрессия описывается правилом an+1 = an + d.


Можно представить ее как: а1, а2, а3, ..., an, где a1 будет первым элементом, аn — n-м элементом, а разность d можно определить разницей между двумя соседними членами a2 - a1 = a3 - a2 = ... = an - an-1.


Например, последовательность чисел 3, 7, 11, 15, 19 может называться арифметической прогрессией, так как каждый последующий член отличается от предыдущего на фиксированное значение 4. Элемент a1 = 3, разность d = 4.

Характеристическое свойство арифметической прогрессии


Такая последовательность имеет определенную закономерность в построении. Элемент n — это всегда среднее арифметическое значение от соседних членов прогрессии. Исключение составляют первый и последний члены, которые не имеет соседнего с одной из сторон.


an = (an-1 + an+1) / 2
Условие: n > 1.


Как решать задачи с арифметической прогрессией на ОГЭ


Для решения задач экзамена после 9 класса нужно знать основные формулы и правила, которые применяются для арифметических прогрессий. Задания могут включать в себя поиск суммы, определения конкретного элемента и прочее.


  • Разность d равна разнице между любыми двумя соседними элементами последовательности: d = an - an-1.
  • Если нужно найти определенный член an, используй формулу: an = a1 + (n - 1) * d.
    a1 — первый член прогрессии, n — номер искомого члена, d — разность.
  • Сумму n членов прогрессии можно вычислить по формуле: Sn = (a1 + an) * n / 2.
    a1 — первый элемент, an — n-й элемент, n — количество элементов.
  • Если необходимо найти номер члена, который соответствует заданному значению, подойдет формула: n = (an - a1) / d + 1.
    a1 — первый член, an — искомый член, d — разность.

Важно внимательно читать условие задачи, чтобы понимать, какие данные уже имеются, и что конкретно тебя просят найти.


Что такое геометрическая прогрессия


Геометрическая прогрессия — это разновидность числовой последовательности, в которой каждый новый компонент получается умножением предшествующего на фиксированное значение. Это значение называют знаменателем.


Прогрессия описывается правилом: bn = bn-1 * q, где q — знаменатель, n — номер члена прогрессии.


Например, последовательность чисел 3, 9, 27, 81, 243 может называться геометрической прогрессией, так как каждый последующий член отличается от предыдущего в фиксированные 3 раза. Элемент b1 = 3, знаменатель q = 3.

Характеристическое свойство геометрической прогрессии


Последовательность тоже имеет определенную закономерность в построении. Квадрат элемента n — это всегда произведением предыдущего и последующего элемента. Исключение составляет первый элемент, который не имеет соседнего с одной из сторон.


an2 = (an-1 * an+1)


Как решать задачи с геометрической прогрессией на ОГЭ


Для решения задач на ОГЭ также нужно знать формулы и правила, которые описывают свойства прогрессии. Задания могут включать в себя нахождение суммы компонентов, нахождение n-го члена и прочее.


  • Знаменатель q равен частному от деления члена прогрессии на предыдущий член: q = bn / bn-1.
  • Если нужно найти определенный член bn, используй формулу: bn = b1 * q(n-1).
    b1 — первый компонент, q — знаменатель, n — номер компонента.
  • Сумму n членов прогрессии можно вычислить по формуле: Sn = b1 * ((1 - qn) / (1 - q)),
    b1 — первый компонент, q — знаменатель, n — количество элементов в последовательности.

При решении задач нужно внимательно читать условия и уметь работать со степенями и извлечениями корней.


В каких заданиях ОГЭ есть задачи на арифметическую и геометрическую прогрессию


На этапе 9-го класса, задачи на арифметическую и геометрическую прогрессии могут встречаться в разделе «Алгебра и начала анализа». В демонстрационном варианте ОГЭ по математике 2024 года задание на знание свойств прогрессии встречается под номером 14. Скачать демонстрационный вариант можно на сайте ФИПИ.


Задачи на арифметическую и геометрическую прогрессии могут иметь разный уровень сложности, поэтому для успешного решения на ОГЭ нужно иметь хорошее понимание основных понятий и формул, связанных с арифметическими и геометрическими прогрессиями.


Если прогрессии все еще кажутся тебе сложными, то начинай подготовку в «СОТКЕ». Наши преподаватели объяснят так, чтобы ты понял абсолютно все. А разнообразные практические задания и качественная проверка с работой над ошибками помогут закрепить твои знания и повысить уверенность в себе.


Записывайся на бесплатный вводный урок, в «СОТКЕ» ты сможешь подготовиться к 4-м предметами по цене одного.

Подписывайся на новости Сотки
рассказываем об акциях и присылаем промокоды
я согласен получать рассылку от Сотки